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Abstract: We propose a multiscale protocol for the simulation of conformation and dynamics of dendrimer
molecules in dilute solution. Conformational properties (radius of gyration, mass distribution, and scattering
intensities) and overall hydrodynamic properties (translational diffusion and intrinsic viscosity) are predicted
by means of a very simple coarse-grained bead-and-spring model, whose parameters are not adjusted
against experimental properties, but rather they are obtained from previous, atomic-level simulations which
are also quite simple, performed with small fragments and Langevin dynamics simulation. The scheme is
described and applied systematically to four different dendrimer molecules with up to seven generations.
The predictive capability of this scheme is tested by comparison with experimental data. It is found that the
predicted geometric and hydrodynamic radii of the dendrimer molecules are in agreement (typical error is
about 4%) with a large set experimental values of the four dendrimers with various numbers of generations.
Agreement with some X-ray scattering experimental intensities also confirms the good prediction of the
internal structure. This scheme is easily extendable to study more complex molecules (e.g., functionalized
dendrimers) and to simulate internal dynamics.

1. Introduction

In scarcely two decades after the seminal papers by Tomalia
et al.,1-3 dendritic molecules have evolved from a fascinating
and promising but extremely difficult topic to accessible and
remarkably useful chemical entities.4,5 The extraordinary range
of applications of these molecules, from catalysis to drug
delivery, has motivated a large body of research on dendrimers.
From the point of view of polymer physical chemistry, their
hyperbranched but regular structure and some peculiarities in
their dilute solution properties motivated originalsand in some
cases controversialsdescriptions of the structure-properties
relationships of dendrimers.6,7 Such relationships are not mere
academic problems but present a really practical importance,
as they determinesin addition to their conventional solution
propertiessthe performance of these molecules in a variety of
applications.

As a consequence of their hyperbranched and regular
architecture, dendrimers may appear as globular nanoparticles;

however, they are not very densely packed, and indeed their
density is not uniform. Furthermore, while their overall shape
may seem nearly spherical, they are not rigid but instead exhibit
a rich internal dynamics. These aspects, which are crucial for
both conventional properties and practical applications, are
difficult to deal with just theoretical descriptions, and therefore
(as it happened with their cousin molecules, globular proteins)
computer simulation has become an essential tool for their study.
A straightforward approach is the molecular dynamics simula-
tion of dendrimer molecules with atomic detail, facilitated by
the availability of software packages that implement this
technique.8-11 The well-known drawback of this approach is
that it may not reach the range of times that are characteristic
in some of the functions of dendrimers. On the other hand,
simulations for coarse-grained models of dendrimers, inspired
in the classical bead-and-connector models used in polymer
physics,12-19 do provide insight on essential features of the
conformation and dynamics of dendrimers but may lack the
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detail needed to make precise, quantitative predictions of
properties of specific molecules. An illuminating and compre-
hensive review of the whole field of computer simulation of
dendrimers has been published by Ballauff and Likos.20

Coarse-grained models may predict properties of individual
molecules by an appropriate choice of adjustable parameters.
As shown in previous works,21-25 atomistic simulations may
help to assign some parameters of such models, while others
parameters had to be adjusted as to fit some pieces of
experimental information and then used to predict other
properties.

In the present work we have intended to develop a protocol to
predict solution properties of dendrimers in a multiscale approach.
The prediction is made with a very simple coarse-grained model.
However, none of the parameters of such a model is adjustable;
instead all are taken from atomistic simulations, which are not
performed on the whole dendrimer but on small molecular pieces
(branches, “Y” junctions, etc.), carrying such atomistic simulations
in very simple ways, like Langevin dynamics. This kind of
multiscale approach is being frequently used in the simulation
of properties of biological macromolecules.26 In our work, for
the atomistic calculation of the effective radius of the units
(branches) we employ bead modeling techniques, implemented
in public-domain tools that have been shown to be extremely
useful for biomolecules,27 and we also use other public-domain
programs for the simulation of the coarse-grained model.28,29

Thus, the present work proposes a unified protocolsin regard
to both model and simulation methodologyswhich is applied
in the same way to four dendrimers: monodendrons and
tridendrons of polybenzylether (mono-PBzE, tri-PBzE),30,31

polyamidoamine (PAMAM),1,32 and polypropylenimine (PPI).33

The chemical structures of the core and the branches of these
dendrimers are displayed in Figure 1. The cores are based on
3,5-dihydroxybenzyl alcohol for mono-PBzE, 1,1,1-tris(4′-
hydroxyphenyl)ethane for tri-PBzE, ethylenediamine (EDA) for
PAMAM, and 1,4-diaminobutane (DAB) for PPI.

We have tried to be quite comprehensive not only including
in our study the four dendrimers which have been sufficiently
characterized in solution but also considering the various
properties that are experimentally available, both hydrodynamics
particularly the intrinsic viscosity [η]sand conformational, like
the radius of gyration Rg obtained from X-ray scattering, and

the angular dependence of scattering intensities. We also predict
other hydrodynamic and conformational properties, like trans-
lational diffusion coefficient, and distributions of mass and
distances, that describe further aspects of the internal structure
and behavior of dendrimers in solution. For the sake of brevity,
we present in the main body of this paper a selection of
examples and results for some properties and some molecules,
along with summarizing conclusions which demonstrate how
the predictions agree with experimental data. In the Supporting
Information, an Appendix gives full details for all the cases.

2. Models and Simulation Protocol

2.1. Mesoscale Model. The model that will be ultimately used
for the prediction of the conformation and properties in solution
is a coarse-grained, beads-and-springs model, having one bead
per branch or repeating unit, thus providing an adequate,
mesoscale representation of architecture of the dendrimer
molecule. A scheme of the model, corresponding to a mono-
PBzE with three generations is presented in Figure 2. The model
has N beads, one representing the core and the remaining N -
1 are the branches. Each bead is attached to a previous one by
one connector, so that the model contains N - 1 linear springs
to represent this connectivity.

We must remark that according to the criterion used in this
work, also followed by some authors,1,21 the first generation of
a dendrimer (G ) 1) comprises the branches emerging directly
from the core. However, other authors consider that primary
structure (our G ) 1) as generation zero (G ) 0),34,35 and
therefore their generation G ) 1 corresponds to our generation
G ) 2, and so on.

For the linear springs linking neighboring beads we have
devised in this work a potential that is a hybrid of Fraenkel
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Figure 1. Chemical structures (I) PBzE branch; (II) mono-PBzE core; (III)
tri-PBzE core; (IV) PAMAM-EDA branch; (V) PAMAM-EDA core; (VI)
PPI-DAB branch; (VII) PPI-DAB core.
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(hard Hookean) and FENE (finitely extensible, nonlinear elastic)
springs.36 As an elastic connector representing a chemical entity,
the spring must have an equilibrium length le and a Hookean
spring constant HHF that gauges the fluctuation of the instan-
taneous length l. Also, to account for the limited extensibility
of the dendrimer branches, the potential includes a maximum
length, lmax, and all these features of our “hard-FENE” springs
are represented by the equation

Figure S1A in the Supporting Information illustrates the form
of the potential defined by eq 1 for the case of mono-PBzE and
compares it to other commonly employed spring potentials.

The disposition of the “child” branches with respect to their
“mother” is limited by the restricted conformational freedom
at the branching points. In our model, this is represented by
angular springs, for which we adopt a simple quadratic potential,

where R is the supplementary angle to the bond angle (R ) 0
for aligned connectors), R0 is the equilibrium angle, and Q is
the bending constant.

We must also include excluded volume (EV) interactions
between nonbonded beads. For the sake of simplicity that
inspires our model, the EV effect is represented by a purely
repulsive hard sphere (HS) potential: if the distance between
two nonbonded beads is less or equal than the contact distance,
σHS, the potential value becomes infinity (in practice a suf-
ficiently high value), and otherwise the potential value is zero.
The calculation of hydrodynamic properties requires the as-
signment of a hydrodynamic (Stokes) radius to the beads, a.
Again, with the intention of maximum simplicity we have
decided that this radius would also be the hard-sphere radius
for the EV effect, so that σHS ) 2a (or the sum of the values of
a radius for a branch and the core). Thus, the set of values of
a, le, HHF, lmax, Q, and R0 defines completely the mechanical
(conformational and dynamic) behavior of our mesoscale model
of the dendrimer.

2.2. Monte Carlo Simulation and Hydrodynamics. The
prediction of properties for our partially flexible dendrimer
models is done by using an importance sampling Monte Carlo
procedure. In addition to conformational properties, like the root-
mean-square radius of gyration, Rg, and various distance
distributions, we compute hydrodynamic properties by using
the rigid-body Monte Carlo (RBMC) method.37-39 In the RBMC
procedure, the properties are evaluated as means of the
calculated values for each conformation in the Monte Carlo
sample, as if the conformation were an instantaneously rigid
particle. We have recently presented a public-domain program,
MONTEHYDRO29 (available from http://leonardo.inf.um.es/
macromol), which carries out both the Monte Carlo generation
of conformations and the calculation of individual and average
values for a general bead-and-connector model of arbitrary
topology. The program requires information on the connectivity
and the values of the parameters characterizing beads, connec-
tors, angles, EV potential, etc., which is supplied in a single
file. An example of such an input file is shown in Figure S2 in
the Supporting Information.

The hydrodynamic calculation for an array of beads is feasible
using standard bead modeling procedures (for reviews, see refs
39-41). A particular difficulty in bead-model calculations has
been that concerning the intrinsic viscosity, which is a key
property in this work. The hydrodynamic approach of Kirkwood
and Riseman,43,44 on which bead-model methods are based, does
not take into account the volume of the beads in the model,
which may give rise to erroneous values of the intrinsic viscosity
when the size of the beads are not much smaller than the size
of the molecule modeled by them. An improved theory that
considered this missing influence45 arrived at the so-called
volume correction for the intrinsic viscosity

where NA is the Avogadro’s number, M the molecular weight
of the solute, and V the volume of the bead model. In the original
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Figure 2. Scheme of dendrimer model: (A) chemical structure of a mono-
PBzE molecule with G ) 3; (B) its coarse-grained bead-and-spring model.
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derivation fη ) 1 so that the correction is the Einsteinian
viscosity of a sphere of the same volume as the model. In some
preliminary predictions of the intrinsic viscosity of dendrimers,
eq 3 was applied with full volume correction.23 More recently
an application of this correction to a variety of bead models46

showed that while [η](uncorr), with fη ) 0, is a lower bound
that always underestimates the correct value, the result with full
volume correction, [η](corr) with fη ) 1, produces an upper-
bound overestimation. Clearly, an intermediate correction with
0 < fη < 1 would be more appropriate. With results gathered for
such a collection of bead models, an empirical correlation has
been determined between the optimum fη and two features of
the model, namely its asphericity and its degree of fragmenta-
tion. The present version of the hydrodynamic calculation
routines, inserted in MONTEHYDRO, includes the determina-
tion of the optimum fη and the corresponding volume correction.
Thus, the study of the intrinsic viscosity of dendrimers does
not require us to consider fη as an adjustable parameter.

2.3. Global Properties, Equivalent Radii, and Ratios of
Radii. In this work we obtain macromolecular global properties
like the radius of gyration, Rg, the intrinsic viscosity, [η], and
the translational diffusion coefficient, Dt (equivalently the
translational friction coefficient, ft) of the different dendrimer
structures. For the presentation and discussion of results, we
shall make use of the concepts of equivalent radii and ratios of
radii.47 For a given value of a solution property, the equivalent
radius is the radius of a spherical particle having the same value
of that property as that of the macromolecule under consider-
ation.47 Equivalent radii for different properties are slightly but
not greatly different and present dependences on size and shape
that are more similar than the values of the properties them-
selves. Thus their use is particularly adequate when different
properties are analyzed jointly. The equivalent radius for the
translational frictional coefficient (derived from either diffusion
or sedimentation coefficient) is

where η0 is the solvent viscosity. It is also called the Stokes
radius or hydrodynamic radius.

Another equivalent radius can be derived from another
hydrodynamic property, the intrinsic viscosity, based on the
Einstein formula for the intrinsic viscosity of a sphere,

where M is the polymer molecular weight and NA the Avogadro
number. In many works where intrinsic viscosity is measured,31,48

aI is also called the hydrodynamic radius. aT and aI are not
identical, but studies for a great variety of structures, rigid and
flexible,47 show that their values are quite close, differing
typically by less than 10%. Yet another equivalent radii is
derived from the root-mean-square radius of gyration,

where Rg ) �〈s2〉 for a flexible structure, as in the case of
dendrimers.

Ratios of any pair of equivalent radii can be formulated. We
will employ the ratios GI ) aG/aI, GT ) aG/aT, and IT ) aI/aT

) GI/GT. Equivalent radii for the various properties are
obviously identical for a spherical particle. For any other particle,
they differ but not by very much. Thus, the ratios are unity for
a spherical particle and differ from, but keep close, to unity for
other conformations. The fact that aT ≈ aI so that IT ≈ 1 (which
will be particularly true for dendrimers due to their nearly
spherical overall conformation) can be used as a good test for
calculation procedures of the two hydrodynamic properties. GI
departs more markedly from unity, but it is expected to be close
to unity for a nearly spherical distribution of segments.

2.4. Distributions of Distances and Mass and Scattering
Intensities. We have evaluated the distribution of distances r,
between pairs of points in the dendrimer, p(r), and the
distribution of the radial distances g(r), from the center to any
point within the molecule. For this calculation, we have taken
into account that the elements in our coarse-grained model are
not points but spheres of finite radius a. Using expressions49

that are presented in section 2 of the Supporting Information,
these distribution functions are evaluated for each instantaneous
conformation of the dendrimer, and the final result is the average
over all the generated conformations. We also analyze how the
mass is distributed inside the dendrimer by using a mass density
distribution function, F(rC), where rC is the distance from the
center of the dendrimer, that is related to the radial distribution
function, g(rC), through the following expression,

The angular dependence of the intensity of radiation scattered
is represented by the scattering function (or scattering form
factor), P(h), where the angular variable is h )(4π/λ) sin(θ/2),
with θ as the scattering angle and λ as the radiation wave-
length.50 As the pair distribution function has been evaluated
previously, P(h) can be obtained directly from it:

3. Atomistic Calculations

In our multiscale approach the values of all of the parameters
defining the coarse-grained model of a particular dendrimer
molecule, i.e., parameters for bonded and nonbonded interactions
(spring and EV potentials) and bead radii, are assigned from
atomistic Langevin molecular dynamics simulations of the part
of the dendrimer represented by those coarse-grained elements.
Therefore, the model does not have free parameters to be fit to
experimental data. The molecular dynamics simulations were
carried out by using the commercial software HYPERCHEM
(http://www.hyper.com) with the AMBER force field at T )
300 K. The simulation conditions were as follows: time step
∆t ) 0.001 ps, collision frequency 100 ps-1, and duration of

(46) Garcı́a de la Torre, J.; Del Rı́o Echenique, G.; Ortega, A. J. Phys.
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the trajectory ∼100 ns; under those conditions we found that
simulations are well equilibrated and produce reproducible data
(it was tested that other choices of the collision frequencies give
nearly identical results, which are also unchanged with shorter
time steps or longer trajectories; for further information see
Figure S3 in the Supporting Information).

(1) Beads: The atomistic simulation with HYPERCHEM
allows us to sweep the conformational space of the dendrimer
monomeric unit represented by a bead. From the atomic
coordinates, the Stokes radius, aT, and the equivalent radius to
radius of gyration, aG, are computed for each conformation by
using our public domain program HYDROPRO27 (see http://
leonardo.inf.um.es/macromol). Regarding the possible influence
of solvation on the effective hydrodynamic radius of the atoms,
we follow previous experience52 that, in the case of small
molecular entities (like the dendrimers monomeric units), such
an effective radius can be equated to the van der Waals radius,
of typically 1.8 Å.51 The results are the averages over a sample
of conformations. Because aT turns out to be similar to aG, we
take as the hydrodynamic radius of the bead representing
the monomer unit their mean a ) (aG + aT)/2.To avoid free
parameters in the model, the radius of the beads in the hard
spheres EV potential was taken equal to a so that the contact
distance becomes σHS ) 2a. This choice seems convenient
because it makes neighboring beads almost tangent and prevent
“phantom” crosses of the connectors.
(2) Connector and angles: Parameters of the potentials associated
to connectors and angles were estimated from atomistic simula-
tions of the minimal atomic structure that defines those
connectors and angles, as illustrated in Figure 3 for a mono-
PBzE. From the atomic trajectories generated with program
HYPERCHEM, the distribution functions for connector length
and angle were obtained. Then we are able to set the spring
potential parameters that give rise to the best fit of the Boltzmann
exponential of the spring potential to those distributions obtained

by molecular simulation. This is done by fitting the simulation
results to

where AR and Al are normalization constants.
In that way, we obtained the values for the parameters of the

coarse-grained models of the four studied dendrimers: mono-
PBzE, tri-PBzE, PAMAM-EDA, and PPI-DAB (see collection
of parameters in section 3 of the Supporting Information). For
example, for tri-PBzE, we must distinguish between bead and
springs in the core and beads and springs associated to the
branches. In regard to the branchesswhich are the same as those
in mono-PBzEsthe HYDROPRO result for the equivalent
radius is a ) 3.2 Å. The atomistic simulation yields the
distribution functions for the branch length and interbranch angle
shown in Figure 4. Fitting p(l) to the Boltzmann distribution
associated to eqs 1 and 9, we get HHF ) 408 erg/cm2, lmax )
7.8 Å, and le ) 5.2 Å, and the fit of the simulated p(R) to eqs
2 and 10 gives Q ) 1.22 × 10-13 erg and R0 ) 1.05 rad. The
fitted equations are compared to the simulation results in Figure
4. We remark that the fits do not reproduce the details of the
simulated distribution functionssas it corresponds to a coarse-
grained representation of the true potentialssbut provide
continuous potential functions that are conveniently handled in
the Monte Carlo and dynamics simulations of the coarse grained
model (indeed, we have verified that the first few moments of
the fitted distribution match rather well the simulated ones).

(51) Bondi, A. J. Phys. Chem. 1964, 68, 441.
(52) Espinosa, P.; Garcı́a de la Torre, J. J. Phys. Chem. 1987, 91, 3612.

Figure 3. Atomic structure of mono-PBzE, G ) 1, showing the beads,
connectors, and angles.

Figure 4. Distribution of lengths (A) and angles (B) in the branches of
mono- and tri-PBzE. Results from the atomistic Langevin simulation and
their best fits to eqs 1 and 2.

p(l) ) All
2 exp[-V(l)/kBT] (9)

p(R) ) AR sin R exp[-V(R)/kBT] (10)
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Regarding the core-branch parameters, we proceed in the same
way, finding a ) 4.5 Å for the bead that represents the core,
and HHF ) 4040 erg/cm2, lmax ) 10.3 Å, le ) 8.3 Å, Q ) 8.28
× 10-13 erg, and R0 ) 1.1 rad. The sets of the parameters for
the four kinds of dendrimers considered in this work are listed
in section 3 of the Supporting Information.

4. Results

4.1. Conformational Distribution Functions. Figures S4-S7
in the Supporting Information show the mass density distribution
functions F(r) obtained for generations ranging from G ) 1 to
G ) 7 for the dendrimer for the four dendrimers. The peak at
very small distance corresponds to the core of the molecule,
represented in the model by the central bead, but its sharpness
is excessive, due to an artifact arising from the model discreti-
zation that exaggerates the high density of the core due to the
almost absence of empty space.

The interesting region is that beyond the very center of
the molecule, at intermediate and longer distances. At
intermediate distances inside the dendrimer, the density
profile shows a slight increase or tends to reach a “plateau”
that is higher and broader as the generation number increases.
Finally the mass density profile presents a soft decay along
a range of distance of ∼10 Å where the density decreases
until a value that exceeds aG. Some examples of density
profiles are depicted in Figure 5A.

These findings are in agreement with a great amount of both
experimental35,53-55 and simulation8,13,56- 60 data that also
predict a density profile more or less uniformly distributed inside
the dendrimer with a decay at the dendrimer surface, which can
be explained by backfolding of the end branches toward the
dendrimer core. As an example of the agreement between our
results and those of other workers, the density profile calculated
with our coarse-grained model of PAMAM-EDA with G ) 5
is compared to that obtained by Götze and Likos59 in Figure
5B. These density profiles suggest a dendritic structure closer
to the dense core model predicted by the Monte Carlo
simulations of Lescanec and Muthukumar7 than to the dense
shell model, which was the hypothesis initially proposed by De
Gennes and Hervet.6

A mean density of the whole dendrimer can be evaluated as
the ratio of the molecular mass to the volume of the sphere
with the same radius of gyration, given by Fj ) 3M/(4πNAaG

3 ).
Values are listed in Tables S5-S8 in the Supporting Informa-
tion. In all cases, Fj values for dendrimers with an increasing
number of generations G show an increase for the largest G’s.
This effect is most pronounced for PAMAM-EDA and least
for mono-PBzE. This finding and the different density profiles
between the molecules are explained by the greater flexibility

of the branches and nodes in PAMAM-EDA, which allows for
a more intense backfolding effect. This is illustrated in Figure
5C, which shows the radial distributions of the end nodes of
intermediate branches with g ) 4 and end branches of g ) 7,
for PAMAM-EDA and mono-PBzE. The terminal branches have
a higher probability to be in the interior of the molecule in the
case of PAMAM-EDA.

4.2. Overall Size and Shape. The radius of gyration Rg gives
a direct measurement of the mean molecular size, and the

(53) Prosa, T. J.; Bauer, B. J.; Amis, E. J.; Tomalia, D. A.; Scherrenberg,
R. J. Polym. Sci.: Part B: Polym. Phys. 1997, 35, 2913.

(54) Wooley, K. L.; Klug, C. A.; Tasaki, K.; Schaefer, J. J. Am. Chem.
Soc. 1997, 119, 53.

(55) Gorman, C. B.; Hager, M. W.; Parkhurst, B. L.; Smith, J. C.
Macromolecules 1998, 31, 815.

(56) Maiti, P. K.; Çağin, T.; Wang, G.; Goddard, W. A., III. Macromol-
ecules 2004, 37, 6236.

(57) Maiti, P. K.; Çağin, T.; Lin, S.-T.; Goddard, W. A., III. Macromol-
ecules 2005, 38, 979.

(58) Harreis, H. M.; Likos, C. N.; Ballauff, M. J. Chem. Phys. 2003, 118,
1979.

(59) Götze, I. O.; Likos, C. N. Macromolecules 2003, 36, 8189.
(60) Jana, C.; Jayamurugan, G.; Ganapathy, R.; Maiti, P. K.; Jayaraman,

N.; Sood, A. K. J. Chem. Phys. 2006, 124, 204719–1.

Figure 5. (A) Mass density distribution F(rC) within dendrimers of
PAMAM-EDA and mono-PBzE with G ) 4 and G ) 7. (B) Comparison
of our results for PAMAM-EDA of G ) 5 with those of Götze and Likos.59

(C) Radial distributions g(rC) for the end nodes of branches g ) 4 and g )
7 of mono-PBzE and PAMAM-EDA with G ) 7.
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asphericity A (calculated by the method of Wei and Eichinger24,61)
gives an idea of the anisotropy of the particle shape or mass
distribution.

Figure 6 is a double-logarithmic plot that represents the
variation of Rg with the molecular mass, M, for all 28 dendrimers
studied in this work. It is remarkable that all the dendrimers
superimpose quite well in a plot that in a first approximation
could be considered a straight line of slope 0.35. But a more
detailed fit shows that the curve has two slopes, 0.4 for
molecular weights up to ∼20 000 g/mol and 0.3 from that value
up to the highest value studied here. This means that two power
laws relating the radius of gyration and molecular weight are
found. Some theoretical calculations and simulations13,62 predict
a slope of 0.33, and molecular dynamics simulations of
Karatasos et al.34 report a value of 0.35. However, there is some
controversy about the existence of a unique power law.59 Thus,
there are also some works where authors find two regions of
different slopes in the double-logarithmic plot59,60,63 with values
similar to those obtained from our fit. Indeed, the behavior
observed in Figure 2 in ref 62 showing experimental values of
Rg vs M for several dendrimers is similar to that displayed in
our Figure 6 with a change in the slope for a molecular weight
of 20 000 g/mol.

A value of the slope (exponent of the power law) of 1/3 is
the expectation for spherical particles (of uniform density), and
it is consistent with some structural studies on dendrimers.64

Also, it is worth mentioning that simulations of Sheng et al.65

show that, for an increase in M associated to an increase in the
number of generations, the exponent is closer to 1/3, but if it is
due to an increase in the branch length and mass, the exponent
should be close to 1/5 as found by Lescanec and Muthukumar.7

Another reason for the change in exponents is that for low M
and G the dendrimers are semiflexible and appreciably non-
spherical, as revealed by the high values of the asphericity, so
that the exponent should be larger than 1/3. On the other hand,
for high G, the mass distribution of the dendrimers is practically
spherical, as revealed by the very low values of the asphericity
(Tables S5-S8 in the Supporting Information). However the

increase in Rg with M is smaller than it should be for spheres
of constant density because of, again, the backfolding effect:
external branches have some tendency to get back to the core,
and therefore the effective volume, proportional to Rg

3, grows
slower than M and the exponent of Rg vs M is below 1/3.

4.3. X-ray Scattering. The angular variation of intensity in
small-angle X-ray scattering (SAXS), represented by the
(normalized) form factor, P(h), provides very valuable informa-
tion not only about the overall size and shape but also about
the internal structure. Beyond the region of very low h, which
is determined simply by the radius of gyration, at higher h’s
scattering intensities are strongly influenced by the distribution
of mass within the dendrimer. For the four dendrimers, up to G
) 7, we have evaluated the P(h) functions, which are presented
in Figures S4-S7. Scattering intensities are usually presented
in the form of Kratky plot P(h)(hRG)5/3 vs hRg. For PAMAM-
EDA, experimental plots of dendrimers up to G ) 10 were
reported by Prosa et al.35 and are compared in Figure S8 with
our simulation results. The similarity of experimental and
simulated diagrams is striking. The agreement is not only
qualitative. In Figure 7 we compare in the same graph our
simulation result for a PAMAM-EDA of G ) 7 with that
coming from SAXS experiments by Prosa et al.35 (as their
intensities are in arbitrary units, we have renormalized with a
constant so that the positions of the primary peak are matched).
Clearly, there is a good agreement between experiment and
simulation over the whole angular range. The two relevant
peaks, the valleys, and the end “plateau” are reproduced by the
simulations at the same positions, i.e., at the same values of
the scattering angles. The fact that simulation results give rise
to deeper valleys can be due to the discretization of the model.
Valleys deeper than those in experimental results are also
obtained in other computational works.66

Unfortunately, the only systematic data of scattering intensi-
ties that reflect so well the overall and internal structure of
dendrimers are those by Prosa et al.35 Similar results for other
dendrimers are, to the best of our knowledge, still unavailable.

5. Hydrodynamic Properties and Equivalent Radii

As indicated above, from our simulations we have also
predictedsin a multiscale approach, without adjustable para-
meterssoverall solution properties for which some experimental
data are available.

(61) Wei, G.; Eichinger, B. E. J. Chem. Phys. 1990, 93, 1430.
(62) Boris, D.; Rubinstein, M. Macromolecules 1996, 29, 7251.
(63) Mallamace, F.; Canetta, E.; Lombardo, D.; Mazzaglia, A.; Romeo,

A.; Mons Scolaro, L.; Maino, G. Physica A 2002, 304, 235.
(64) Pötschke, D.; Ballauff, M.; Lindner, P.; Fischer, M.; Vögtle, F.

Macromolecules 1999, 32, 4079.
(65) Sheng, Y. J.; Jiang, S.; Tsao, H.-K. Macromolecules 2002, 35, 7865. (66) Rathgeber, S.; Pakula, T.; Urban, V. J. Chem. Phys. 2004, 121, 3840.

Figure 6. Radius of gyration of the four dendrimers, with generations G
) 1-7, plotted altogether vs molecular weight, showing the two regions
with different scaling exponents.

Figure 7. Kratky plot for the variation of X-ray scattering intensity for
PAMAM-EDA with G ) 7: experimental values (Prosa et al.35) and our
simulations.
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The most frequently reported property is the intrinsic viscos-
ity, [η]. In general, in our simulations (Figure S9) as well as in
many other experimental and computational studies,17,21,31,32 it
is found that [η] does not increase monotonically with molecular
weight, unlike the case with common polymers. Instead, [η]
reaches a maximum value and then it keeps constant or even
decreases. As indicated above, for high G the effective
(hydrodynamic) volume of the molecule does grow with G,
although that growth may be less than that of the molecular
mass. Considering dendrimers as spheres, for which [η] is related
to specific volume (i.e., the ratio of volume to mass), its value
would remain constant if the density does not change on going
from G to G + 1, and it could even decrease when volume
grows less than mass due to the backfolding effect. The effect
is particularly visible in our simulations for the dendrimers with
more flexible branches, PAMAM-EDA and PPI-DAB, that
present a more marked backfolding phenomenon.

Nonetheless, the geometric or hydrodynamic size of the
dendrimer grows with G. That should be reflected by the
hydrodynamic radius that one would obtain from the diffusion
coefficient, D. Unfortunately, measurements of this property are
quite rare so far; hopefully the modern dynamic light scattering
instrumentation which could allow precise measurements for
such small macromolecules will soon provide such information.
More abundant are the experimental results for the radius of
gyration, Rg, determined from scattering intensities at very low
angles. As discussed above, to make a more systematic,
simultaneous treatment of the various overall properties, we have
chosen to express them in the form of the equivalent radii aG,
aT, and aI. The results are reported in Tables S5-S8. These
predictions are intended to be compared with experimental data,
for which we have taken:
(1) For mono-PBzE, Rg in THF,48 and [η] in THF.31

(2) For tri-PBzE, Rg (no experimental data), and [η] in THF.31

(3) For PAMAM-EDA, Rg in 0.1 M citric acid in water,32 and
[η] in 0.1 M citric acid in water, Figure 14.2 in ref 4.
(4) For PPI-DAB, Rg in D2O,67 and [η] in D2O.67

We chose experimental data in solvents for which exist
measurements of both Rg and [η] to be able to compare properly
their respective equivalent radii. It is remarkable that those
experimental data are reproduced quite well by our simulations,
especially taking into account that we do not use adjustable
parameters to model solvent quality.

Figure 8 shows the equivalent radii aG and aI (the other
hydrodynamic radius, aT, is generally quite close to aI) for mono-
PBzE. For the other three dendrimers, similar plots are in Figure
S11. At first sight, the agreement is very satisfactory. Nonethe-
less, we have quantified the concordance between experimental
and calculated radii, in terms of a typical error, defined as the
root-mean-square percent deviations:

For a given property, X, the sum can be run over the various
G’s of a dendrimer and even over all the four dendrimers and
over the various properties of a dendrimer or the whole set. As
seen in Table 1, the typical errors for the various dendrimers of
both the geometric radii aG and the hydrodynamic radii aT or aI

are, in most cases, of only a few percent, of the same order as

the typical error of the experimental values. For a set of 26
equivalent radii, the typical deviation of our simulations from
experimental data is ∼4%.

6. Concluding Remarks

In this work we have implemented a scheme for the prediction
of properties of dendrimer molecules using a very simple coarse-
grained model whose parameters are not adjusted to fit
experimental data, but instead they are obtained, in a multiscale
approach, from previous atomistic simulations, which are also
done in a simple fashion, with Langevin dynamics, not of the
whole molecule, but of small pieces of it. Although the
procedure has two stages and lacks adjustable parameters, it
predicts geometric and hydrodynamic radii of the four den-
drimers studied that agree with experimental data with a typical
error of ∼4%. Furthermore, the internal distribution of mass
seems to be predicted correctly, as probed by the agreement
with some X-ray scattering data and other computer simulations.

The present scheme opens the possibility of studying other
related systems, like functionalized or variegated dendrimers,
randomly hyperbranched molecules, etc. In the present work,
the adequately parametrized coarse-grained model has been
simulated by a Monte Carlo procedure to obtain conformational
and overall properties of the molecule, but we anticipate that
the same model (with the forces derived from the analytical
potentials on which it is based) could be used for Brownian
dynamics simulations of the internal dynamics of the dendrimers

(67) Scherrenberg, R.; Coussens, B.; van Vliet, P.; Edouard, G.; Brackman,
J.; de Brabander, E.; Mortensen, K. Macromolecules 1998, 31, 456.

% diff ) 100[∑(aX(calc) - aX(expt)

aX(expt) )2]1/2

(11)

Figure 8. Equivalent radii aG and aI for mono-PBzE: our simulation results
along with experimental values.31,48

Table 1. Typical Errors of the Equivalent Radii of the Various
Dendrimers and Global Typical Errors

equivalent radius dendrimer molecule rms % diff num. of data

aG mono-PBzE 7.7 3
aI mono-PBzE 2.9 5
aI tri-PBzE 6.3 7
aG PAMAM-EDA 3.2 3
aI PAMAM-EDA 2.9 4
aT PAMAM-EDA 5.7 3
aG PPI-DAB 4.1 4
aI PPI-DAB 2.9 4
all mono-PBzE 5.2 8
all tri-PBzE 6.3 5
all PAMAM-EDA 4.0 10
all PPI-DAB 3.2 8
aG all 5.3 10
aI all 2.9 13
aT all 5.7 3
aI,aT all 3.6 16
all all 4.3 26
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in solution, to study dynamic aspects that would be out of reach
of fully atomistic molecular dynamics simulations.
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